Точность станка с ЧПУ

Фрезерный станок с ЧПУВ этой статье представлены теоретические рассуждения на этапе подготовки к созданию станка с ЧПУ своими руками. Без этих знаний не стоит приступать к его созданию, поэтому статья рекомендуется к прочтению тем, кто еще только планирует построить свой станок с ЧПУ. Спустя полтора года с момента ее опубликования, я написал следующую статью для тех, у кого уже есть сам станок. Она называется Точность станка с ЧПУ. Практика. В ней я расскажу о методике измерения точности и о выводах, которые следуют после измерений.

Начну с того, что для домашнего производства станок с ЧПУ является просто незаменимым оборудованием. Поэтому я и решил собрать фрезерный станок с ЧПУ своими руками. Дело это нелегкое и, надо сказать, крайне затратное. На данный момент потраченная на создание станка сумма уже приближается к стоимости готового станка. Но для меня это не было секретом — об этом везде и часто пишут. Просто когда делаешь фрезерный станок с ЧПУ своими руками, то по неволе будешь досконально знать все тонкости: как он работает, как его настроить, какие шаги предпринять, чтобы повысить его точность, скорость обработки и другие параметры. В общем, с головой окунаешься в технологическую среду станкостроения.

В данной статье на ТехноБлоге Dimanjy пойдет речь о точности станка с ЧПУ в зависимости от выбора типа передачи, шаговых двигателей и режимов их работы.

Работа станка с ЧПУСовсем немного теории. Если вы уже интересовались фрезерными станками с ЧПУ, то наверняка знаете, что они состоят из режущего/фрезерующего инструмента (шпиндель с установленной фрезой) и системы линейных перемещений инструмента, т.е. системы, обеспечивающей автоматическое перемещение инструмента в пространстве. Именно так станок с ЧПУ сам выпиливает заданную деталь.

Система линейных перемещенийСистема линейных перемещений станка строится (обычно) на базе шаговых двигателей. Здесь я буду рассматривать именно станки с ЧПУ, собранные своими руками, а не дорогие промышленные образцы, на которых могут стоять гораздо более дорогие промышленные серво-двигатели. А собирая станок своими руками обычно стараются придерживаться минимального бюджета. Именно бюджетным вариантом является использование шаговых двигателей.

Идем далее. Задача системы линейного перемещения на базе шаговых двигателей состоит в преобразовании вращательного движения ротора двигателя в поступательное (линейное) движение каретки, к которой крепится инструмент. Существует два вида преобразователей: передача винт-гайки (и ее разновидности) и зубчатые передачи (зубчатые ремни или рейки).

Винтовая передача и зубчатый ремень

Выбирая тип передачи (винтовая или зубчатая), конструктор руководствуется задачами, которые стоят перед станком, требованиями точности и доступности тех или иных материалов. В общем случае, винтовая передача обеспечивает более высокую разрешающую способность станка, чем зубчатая передача, но уступает последней в скорости перемещения инструмента. Если вам нужен станок, способный фрезеровать ювелирные украшения, то он скорее всего должен быть построен на винтовых передачах, но он будет медленный. Если вы хотите выпиливать много и быстро не мелких деталей (относительно ювелирки), то строить его желательно на зубчатых передачах. Но на нем нельзя будет делать что-то очень мелкое, т.к. его разрешающая способность не позволит. Давайте теперь немного посчитаем на конкретных примерах.

Шаговый двигательРасчеты начинаются с шагового двигателя, у которого есть такой параметр, как число шагов на один полный оборот. Для самодельных станков с ЧПУ обычно применяют шаговые двигатели, имеющие 200 шагов на один оборот (360° / 200 = 1.8°). Шаговые двигатели могут работать в режиме полушага и делать 400 шагов на оборот. Теперь попробуем переложить это число на винтовую и зубчатую передачи, и посмотреть, какой теоретической разрешающей способности можно добиться от них при использовании одного и того же шагового двигателя. Здесь и далее я буду говорить именно о разрешающей способности, а не о точности, хотя нередко люди путают эти понятия и под «точностью станка с ЧПУ» подразумевают именно его разрешающую способность.

Итак, какое же разрешение можно получить на винтовой передаче, имея шаговый двигатель с 400 полушагами на один оборот? Винтовая передача имеет такой параметр, как шаг резьбы. Пусть шаг резьбы у винтовой передачи будет 2 мм (именно такой шаг делают на обыкновенных строительных шпильках). Т.е. гайка, накрученная на этот винт за полный оборот переместится на 2 мм. Если приделать к винту шаговый двигатель и покрутить им винт, то получится, что за один полушаг двигателя винт переместит гайку на 2мм/400 = 0.005 мм! или 5 микрон! Невероятно! С таким разрешением тульский Левша не только подковал бы блоху, но и набил бы ей татуху!

Винтовая передачаОднако представьте, теперь, что при помощи такой винтовой передачи нам нужно переместить инструмент на 20 см. Это 100 оборотов винта или 100 х 400 = 40.000 полушагов. Скорости шаговых двигателей обычно относительно небольшие — 50 оборотов в минуту это уже достаточно быстро для шаговика. Значит чтобы переместить инструмент на 20 см, сделав 100 оборотов, надо ждать целых 2 минуты! Катастрофа!

Посмотрим теперь на точность зубчатого ремня. Точнее, разрешающую способность, которой можно добиться используя передачу на зубчатом ремне. В самодельных станках с ЧПУ часто применяют зубчатые ремни с шагом зубьев 5.08 мм. На ротор шагового двигателя одевается шкив, который также имеет определенное число зубьев, входящих в зацепление с зубчатым ремнем. Для примера расчетов возьмем шкив на 12 зубьев. Получается, что за полный оборот шагового двигателя (400 полушагов) зубчатый ремень пройдет 12 х 5.08 = 61 мм. Значит на один полушаг приходится 61 / 400 = 0.15 мм.

Зубчатый ременьДа уж! Тут микронами и не пахнет, и даже в «десятку» (одну десятую миллиметра) не укладываемся. Но задайте себе вопрос, будете ли вы создавать детали, у которых элементы (например, соседние отверстия) будут располагаться друг к другу ближе чем на 1 мм? И теперь представьте, как быстро будет перемещаться инструмент вашего станка с ЧПУ: при 50 оборотах в минуту передача на зубчатом ремне передвинет инструмент на 61 х 50 = 3000 мм или 3 метра! за минуту. Это вам не 10 см в минуту на винтовой передаче!

Здесь вы бы могли мне возразить, особенно если изучаете вопрос создания станков с ЧПУ своими руками достаточно длительное время, потому как в сети есть умельцы, которые разгоняют шаговые двигатели до космических скоростей. Я встречал упоминания чуть ли не о 500 оборотах в минуту! С такой скоростью можно и винтовую передачу крутить достаточно быстро. Теоретически, да… Но на практике шаговый двигатель очень сильно теряет свой момент при увеличении скорости вращения. Он вообще не предназначен для быстрого вращения — для этого существуют другие типы двигателей.

Передача на капролоновой гайкеС самого начала, когда я только приступил к изготовлению станка с ЧПУ своими руками и начал описывать этот процесс в своем ТехноБлоге Dimanjy, я также решил использовать винтовую передачу. Набрал в ближайшем магазине строительных шпилек по 100 рублей, заказал для них гайки из капролона, купил на базаре подшипники, выточил на них держатели… Но когда я все это хозяйство собрал в единую конструкцию, то провернуть руками винт передачи просто не смог! Строительные шпильки все кривые — дают биение до 2мм на 1 метре длины. Подшипники отцентровать в домашних условиях просто нереально, поэтому ни о какой соосности речи быть не могло. Спрашивается, как это все будет вращать бедный шаговый двигатель? А никак!

После первого неудачного эксперимента я решил-таки обратить внимание на промышленные элементы передач для станков. Начал сравнивать их и прикидывать стоимость.

Винтовая передача требует высокоточные винты, подшипники на каждый винт с двух сторон, держатели для подшипников и гайку передачи на каждый винт. Но винты надо как-то вращать, поэтому на шаговые двигатели нужны еще специальные муфты, а еще лучше — те же зубчатые ремни и два шкива: один на двигатель, один на ходовой винт. В общем — уйма деталей, да еще и большой головняк при настройке, не говоря о изначально повышенных требованиях к станине будущего станка для соблюдения соосности при установке держателей винтов. Двойной ценник с заведомо непредсказуемым результатом. Нафик-нафик!

Передача на зубчатом ремне оказалась наиболее бюджетным вариантом. Для самодельного станка с ЧПУ нужен только сам зубчатый ремень, шкивы для него на шаговые двигатели и по два натяжных ролика в комплект к шкиву. Натяжные ролики я сделал из обычных подшипников. Настройка зубчатого ремня сводится только к его натягу — просто чтобы не болтался.

Итак решено — делаю на зубчатом ремне. Закупил комплектующие, переделал станину, установил шаговые двигатели и ремни. И вуаля — все зашуршало, и довольно бодро! Двигатели не испытывали никаких трудностей при перемещении много-килограммовой станины вместе с увесистым шпинделем. Все недочеты сборки и мелкую кривизну передача на зубчатом ремне сглаживает за счет собственной эластичности. Однако малое разрешение в 0.15 мм никак не давало мне покоя. Конечно всегда хочется большей точности, и я начал поиски путей ее увеличения.

Первое, что приходит на ум — использовать редуктор. Но это влечет к усложнению конструкции, ее удорожанию и, опять-таки, снижению скорости! А можно как-то повысить разрешающую способность самодельного станка с ЧПУ при сохранении прежней скорости перемещений? Оказалось, что теоретически такое возможно. Решение нашлось в способе управления шаговым двигателем.

Все дело в том, что шаговый двигатель может работать не только в полношаговом или полушаговом режиме. Специальным образом управляя током в обмотках двигателя можно добиться так называемого «микрошагового» режима работы двигателя. При этом есть возможность раздробить один полный шаг на множество более мелких шагов, получая 1/4, 1/8, 1/16, 1/32 шага и даже больше! Уже при 1/4 шага разрешение станка с ЧПУ на ременной передаче повышается в 2 раза с 0.15 до 0.075 мм, при 1/8 — до 0.04 мм, при 1/16 — до 0.02 мм. Это уже кое-что!

Устройство шагового двигателяОднако тут кроется небольшая проблема. Дело в том, что производители не гарантируют работу двигателя в микрошаговом режиме. Кроме того, разные шаговые двигатели ведут себя в режиме микрошага по-разному, и нигде не описывается характеристика конкретного двигателя в микрошаговом режиме. Оно и понятно — этот режим в принципе не предусматривался при разработке шагового двигателя, который по сути является конечным автоматом с четко определенными состояниями, свойственными цифровой технике (1 — шагнули, 0 — стоим на месте). Микрошаговый режим — это попытка аналогового управления двигателем, изначально рассчитанным на «цифровой» сигнал.

Микрошаговый режим шагового двигателяВ микрошаговом режиме шаговый двигатель раскрывает перед нами всю свою аналоговую нелинейность, свойственную всему сущему в нашем мире. Если ток в одной из обмоток зафиксировать, а во второй плавно поднимать от нуля до того же уровня, то ротор двигателя, вопреки ожиданиям, не станет плавно перемещаться. При величине тока во второй обмотке порядка 50% от тока первой шаговый двигатель вообще не движется. От 50 до 70% ротор оживает и начинает еле заметно проворачиваться, а от 70 до 100% проворачивается уже в три раза быстрее. Т.е. зависимость угла поворота от величины тока в обмотке близка к экспоненциальной. Такая картина характерна для мощных гибридных шаговых двигателей, применяемых в самодельных станках с ЧПУ. Если же взять маломощный шаговый двигатель от старого принтера, то там зависимость уже другая, почти линейная. И так для каждого двигателя. Разные двигатели — разные характеристики для микрошагового режима.

Промышленный контроллер шагового двигателяНа рынке широко представлены контроллеры шаговых двигателей с поддержкой микрошагового режима, но в них для его реализации применяется обычная таблица синусов, которая совершенно не учитывает нелинейность и индивидуальные особенности каждого конкретного двигателя. Какой прок от такого кривого микрошага? Как ни странно, но прок есть даже от такого. Все дело в том, что в обычном режиме полного шага или полушага шаговые двигатели сильно вибрируют. Наступает механический резонанс, который заставляет вибрировать и громыхать весь станок, что крайне негативно может сказаться на точности. Если же каждый шаг, поступающий из управляющей программы разделить на микрошаги и подать их на двигатель, то перемещение станет значительно плавнее и тише. Но фиксации двигателя в микрошаговом положении такие контроллеры не обеспечивают, потому как положение ротора в этом промежуточном состоянии совершенно не предсказуемо для обычного микрошагового контроллера.

Откалиброванный шаговый двигательДавайте теперь представим, что контроллер откуда-то знает о нелинейности характеристики шагового двигателя, и вместо стандартной таблицы синусов, записанной в его памяти, он будет выбирать значения для токов обмоток из специальной индивидуальной таблицы, составленной под конкретный двигатель. Тогда микрошаговый режим можно будет использовать не только для снижения резонанса, но и для реального увеличения разрешающей способности станка с ЧПУ!

Но как же передать в контроллер шагового двигателя эту волшебную таблицу, рассчитываемую индивидуально под каждый двигатель? Решить эту задачу нам поможет предварительная калибровка шагового двигателя и специальный контроллер, поддерживающий работу с этой калибровочной таблицей! Такой контроллер шагового двигателя я как раз в данный момент и разрабатываю. На моем ТехноБлоге Dimanjy вы можете следить за ходом его разработки и последними обновлениями.

Контроллер шагового двигателя

 

Калибровку шагового двигателя я решил осуществлять оптическим методом с использованием обычной лазерной указки, жестко установленной на ротор шагового двигателя, но об этом читайте в моей следующей статье на ТехноБлоге Dimanjy.

Также я начинаю цикл статей о том, как создать станок с ЧПУ своими руками, потому как у меня уже появились некоторые результаты в этом направлении. Следите за обновлениями!

  • Макс

    Любопытно. В сообществе репрап никто калиброванным микрошагом не занимался?
    Вы будете выкладывать схему, топологию, прошивку?

    Странно, что ваш сайт не изобилует комментариями.

    Вообще, у нас с вами интересы прямо совпадают, ххе. Буду заглядывать.

    • http://dimanjy.com/ Dimanjy

      Сайт-то мой пока новый. Я всем этим занялся менее года назад, поэтому и комментариев пока мало.

      Я где-то уже встречал на форумах подобные разработки, только ссылок не сохранил.

      По поводу схемы — я взял за основу классическую схему с H-мостами, управляемыми от ATmega через драйвера MOSFET на IR2104. Схемы эти легко можно отыскать в Google-картинках. Там их просто завались :)

      Остается только прошивка. Когда будет готова, возможно и выложу.

  • http://unfollowkiller.synxronica.com/ lonely_warrior

    Эх, беда. Пока сам не сделаю, не поверю. Сегодня буду докручивать механизм на винтовой передаче. Посмотрим что из этого получится.

  • Althair

    Я вот тоже наступил на микрошаговые грабли… Лапы шаловливые — начал ваять свой контроллер. Может, объединим усилия?

    • http://tech.dimanjy.com/ Dimanjy

      Я пока могу только теоретически чего-то подсказать, посоветовать, потому как времени катастрофически не хватает. Свой контроллер мечты я отложил на будущее :) Работаю временно с обычным китайским.